Ammel - ELECTRO AMMONIA REMOVAL SESD - CAPACITATIVE DEIONIZATION

Advanced electrochemicalsystems for water treatment

EXAMPLE 1 Creating Synergy for Sustainable Future

NOVEL WATER TREATMENT SYSTEMS

70 Inpar 10 -

HEADQUARTER

ENPAR Technologies 70 southgate drive, Unit4 Guelph, Ontario, N1G4PS CANADA

U.A.E. Sole Distributor

PROVECTUS Middle East P.O. Box 48987, Dubai

ENPAR Technologies Inc.

Forward-Looking Statements

This document contains certain forward-looking statements and information relating to ENPAR Technologies Inc. which are based on the beliefs of Management as well as assumptions made by and information currently available to ENPAR. These statements, which can be identified by the use of forward-looking terminology such as "anticipates," "believes," "estimates," "expects," "may," "will," "should" or the negative thereof or other variations thereon and similar expressions, as they relate to ENPAR or its management, are intended to identify forward-looking statements.

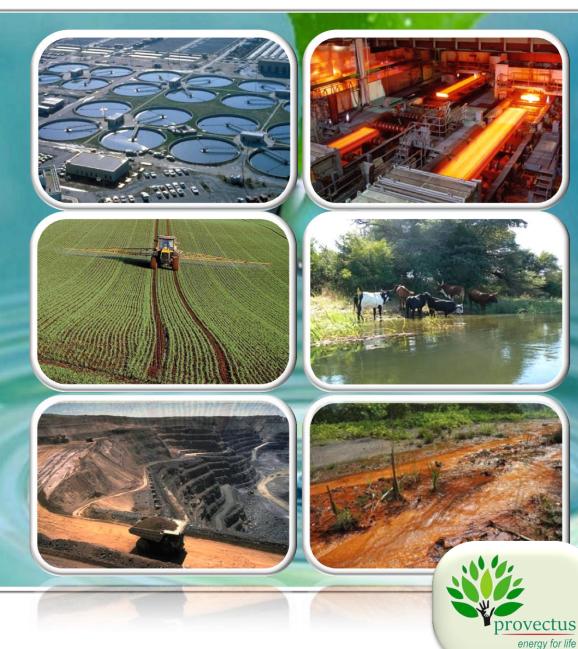
The forward-looking statements relate to, among other things, regulatory compliance, the sufficiency of current working capital, the estimated cost and availability of funding for the continued research and development and marketing of ENPAR's patented and proprietary technologies. Such statements reflect the current views of ENPAR management with respect to future events and are subject to certain risks, uncertainties and assumptions. Many factors could cause the actual results, performance or achievements of ENPAR to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements.

ENPAR Technologies Inc.

- Founded 1996, spin-off of University of Guelph, IPO in Feb 1997
- Directors

Mr. Nizar Kammourie, Managing Director, Saudi Brothers, Saudi Arabia
Sunil Ghorawat, Managing Director of Earth Water India (former CEO Pentair India)
Mr. Ed Tsang, former CEO of Heinz China
Dr. Barry Shelp, Prof. of Biochemistry, Univ. of Guelph
Dr. Gene Shelp, President and CEO

Senior Team Members


 Dr. Iurie Pargaru, Senior Research Scientist
 Mr. Daren Yetman, A.Sc.T., Senior Project Manager
 Dr. John Motto, Senior Chemist

Water Issues

- Ammonia
- Arsenic
- Fluoride
- Hardness
- Metal ions
- Nitrate
- Radionuclides
- TDS (Salinity)

ENPAR is committed to the engineering, manufacturing, and sales of advanced electrochemical systems for water treatment.

AmmEL Electrochemical Ammonia Removal

ESD Electrostatic Deionization

ENPAR's Water Treatment Solutions

	AmmEL	ESD	
Technology Type	Physical / Electrochemical	Electrochemical	
Application	Ammonium Treatment	TDS, metals, nutrients	
Advantages	Toxic Ammonia to Nitrogen Gas No Carcinogen Nitrate No Greenhouse Gas - NOx High Efficiency at Low Temp Not sensitive to water chemistry High efficiency (< 1 mg NH ₄ +/L)	High Water Recovery (>90%) High Ion Removal Efficiency No Moving Parts Low energy consumption (0.4 kWh/m ³ pure water for nitrate/sodium removal)	
Market Sectors	Mining / Industrial Waste Water Municipal Waste Water Contaminated Ground Water	Industrial Waste Water Municipal Waste/Drinking Water Brackish Ground Water	
Competition	Biological / Chemical	Reverse Osmosis / Membrane	
Capital Cost	\$1.2M vs \$1.7-\$2.5M (1M LPD)	Cost competitive	
Operating Cost (no labour)	Tertiary - \$0.08/m ³	Drinking water \$0.06 /m ³ vs \$0.08-\$0	

orovectus energy for life

The AmmEL System

Patented Processes for the Treatment of Ammonia in Municipal and Industrial Wastewater

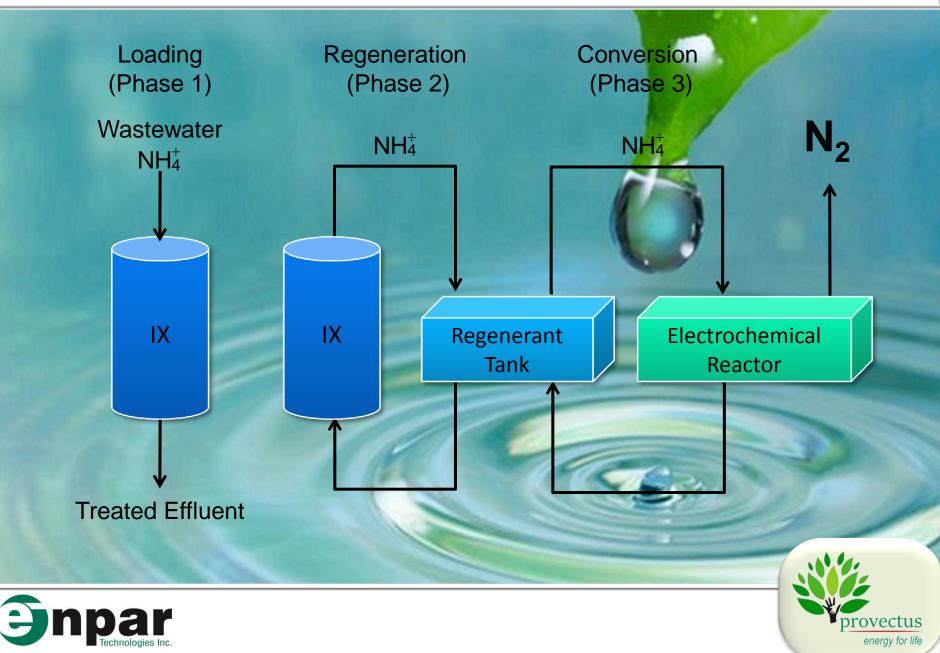
Ammonia Converted to Environmentally–Friendly Nitrogen Gas or Ammonium Sulphate

System Applications

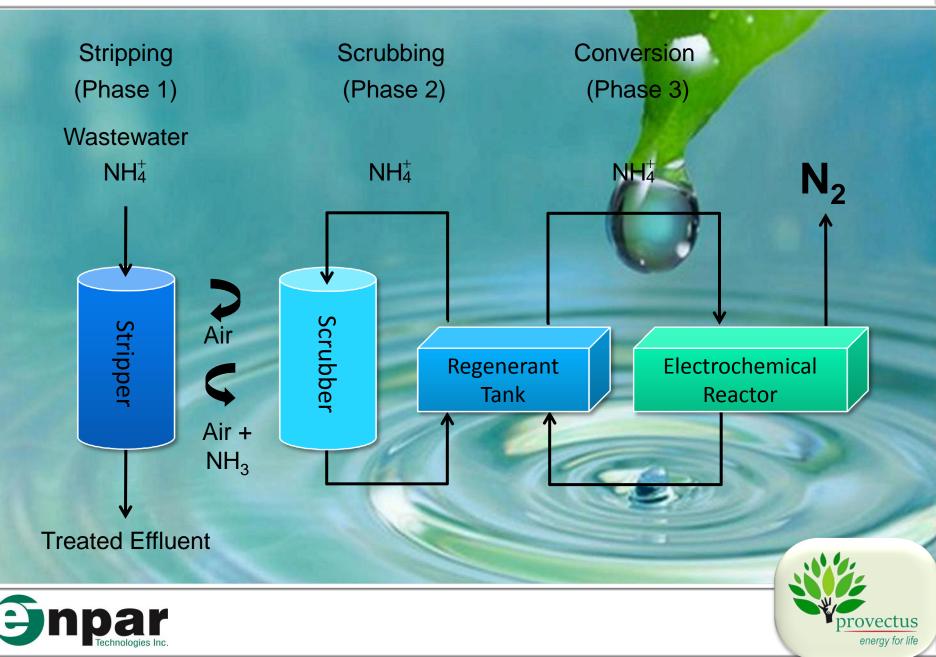
 Secondary treatment of sludge dewatering filtrate and tertiary treatment for municipal waste water treatment plants (MWTP) and lagoon systems

 Mining effluents or process streams containing ammonia derived from the use of ammonia based explosives and/or the oxidation of cyanide

 Process streams related to steel, fertilizer and chemical industries


Three Variants of the AmmEL System

	AmmEL-LC	AmmEL-HC	AmmEL-MC
Operational NH ₃ -N Concentration	< 100 mg/L	>100-1000's mg/L	>50-1000's mg/L
Ammonia Removal Through…	Ion Exchange	Strip and Scrub	Membrane Diffusion
Ammonia Recovered As	N ₂ (destructive via Electrochemical Reactor)	N_2 (destructive) or (NH ₄) ₂ SO ₄ (can be recovered and re-used)	$(NH_4)_2SO_4$ – (can be recovered and re-used)
2014	14		


The AmmEL-LC Process

Mobile AmmEL-LC Unit

The AmmEL-HC Process

The AmmEL-HC System

ESD - Electrostatic Deionization

Electrostatic Removal of Total Dissolved Solids from Industrial and Municipal Wastewater and Groundwater

Recycle and Reuse Application

ENPAR's ESD System treats all dissolved ions including arsenic, fluoride, hardness, metals and nitrate while maintaining *HIGH WATER RECOVERIES*.

ESD purifies water through Capacitive Deionization (CDI) using proprietary carbon electrodes.

CDI – A Game Changer

Hi Water Recovery and Hi Ion Removal

Can be tuned to operate at various levels of ion removal and water recovery efficiencies

CDI

Advantages

No continual addition of salts or chemicals for drinking water and brackish water applications

Mono-valent design targets monovalent ions i.e., nitrate, fluoride, chloride, perchlorate, cyanide

Multivalent design removes equal amounts of all ions

Low Maintenance and ease of operation

Validation of ESD Technology

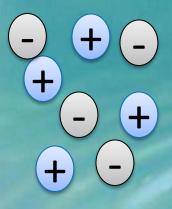
Nitrate -N	311 mg/L to 11.8 mg/l	96.2%
Fluoride	10 mg/L to 0.65 mg/l	93.5%
Arsenic	0.339 mg/L to 0.012 mg/l	96.5%
E.Coli	40000 Cfu/100mL to 305 Cfu/100mL	99.2%
Soluble Silica	12.1 mg/L to 0.6 mg/l	95.0%
Sulphate	65 mg/L to 4.6 mg/l	92.9%
Chloride	660 mg/L to 51 mg/l	92.3%
Sodium	440 mg/L to 2.8 mg/l	99.4%
Magnesium	30 mg/L to 2.5 mg/l	91.7%
Calcium	80 mg/L to 3.2 mg/l	96.0%
Total Hardness	320 mg/L to 18 mg/l	94.4%
Conductivity	935 μS/cm to 21 μS/cm	97.75%
TDS	1650 mg/L to 125 mg/l	92.4%
(0 10 20 30 40 50 6 % Removal	0 70 80 90 100

Heart of the ESD System – CDI Cell

Carbon Electrode

Pretreatment for ESD:

- Remove oil and grease
- Filter at 1 μm
- pH 0-9.5
- •Max temp 40°C



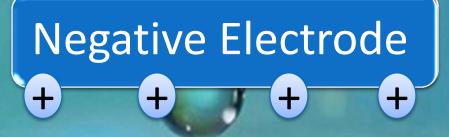
Operation - Purification

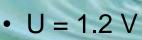
 During the purification cycle, contaminants are drawn towards the charged electrodes – positive ions to the negative electrode and negative ions to the positive electrode

Contaminants

Negative Electrode

Positive Electrode

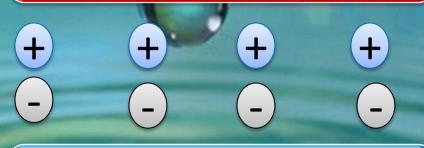

• U = 1.2 V

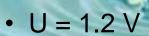


Operation - Regeneration

- During the regeneration cycle, the polarity on the electrodes is reversed.
- lons move away from the electrodes.

Positive Electrode




Operation - Purge

• During the purge cycle, the ions are removed as a small volume of concentrate.

Positive Electrode

Negative Electrode

ENPAR Pilot ESD Units

Inpar

5-Cell ESD 12k Greenhouse in Leamington, ON

4-Cell ESD 10k Republic of Korea

WINTER TOTAL

ENPAR Full-Scale ESD Modules

ESD 112k 36-cell module (max. 150 m³/day) built for Korean company JUKAM

ENPAR Full-Scale ESD Modules

ESD 100k 36-cell mobile module (max. 140 m³/day) City of Guelph demonstration unit

ESD 100K Demonstration Plant – Jeddah, KSA

Dr. Iurie Pargaru, August 2015 © enpar technologies inc.

ESD vs Membrane (RO)

(Comparison is for drinking water quality)

Up to 95% water recovery (WR)

ESD

\$0.06 per m³

No water softening required

Low maintenance

Total ion removal OR selective to monovalent ions

70 -75% WR 1st stage 85% WR 2nd stage

\$0.08 – 0.16 per m³

Water softening required

High maintenance

Total ion removal

CDI Technology

RO Technology

 High water recoveries coupled with high ion removal efficiencies.

No sustained concentrate leading to the formation of precipitates and fouling.

- Long life cycles of the capacitor materials.
- Minimal CIP requirement.

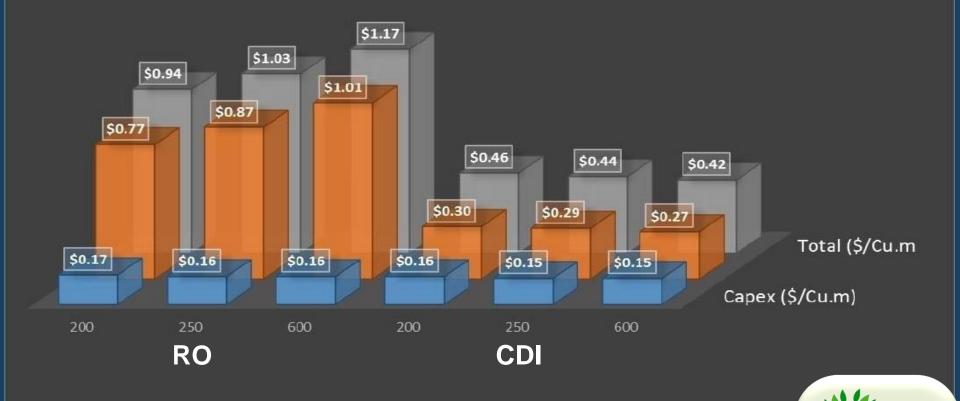
***** Not sensitive to Silica.

 Low recoveries at high removal rates.

 Pressurized saline stream leading to concentration polarization forming scales.

 Frequent membrane replacement.

- Frequent CIP requirement.
- Pre-treatment required for Silica.


Competitive positioning

Performance Metric	CDI Technology	RO
TDS Removal Efficiency (Single Pass)	>95%	>95%
% Water Recovery	>90%	40-50%
Scaling/fouling potential	Very Low	High
Life time	10 years (Capacitors/Membranes)	3 years (Membranes)
Energy Consumption (KWH/Cu.m)	0.8-1.5	3-4
Mono-valent Selectivity	Yes	No
Operating Costs (\$/Cu.m)	х	3x
Capital Costs (\$/Cu.m)	2x	x
	pr	ovectus energy for life

Competitive positioning

RO Vs CDI Comparison

🔳 Capex (\$/Cu.m) 🛛 🛑 Opex (\$/Cu.m) 🛛 🔳 Total (\$/Cu.m

energy for life

ESD - Attractive ROI

SPECIFICATION	VALUE	UNITS
System Capacity	200	GPM Product Flow
TDS	40-400	ppm
Salt Removal	97	%
Water Recovery	95	%
Energy Consumption (KWH/Cu.m)	0.8	KWH/Cu.m
CAPEX+OPEX, CDI	\$0.46	\$/Cu.m Product
CAPEX+OPEX, RO	\$0.90	\$/Cu.m Product
Cost Savings with CDI	\$0.43	\$/Cu.m Product
Product Flow for break even	461030	Cu.m
Product Flow	1658010	Cu.m
Time to breakeven	<1.5	years
		provectus energy for life

Summary

- Currently a need for a reliable, high efficiency, low maintenance technology for the treatment of drinking water, wastewater, and industrial process water.
- The ESD System is a promising technology for the treatment of a variety of water streams.
- Compared to traditional approaches (e.g. RO), the ESD System provides high contaminant removal efficiencies while achieving high water recoveries.

Proven Technology with fast ROI.

THANK YOUI

provectus energy for life Creating Synergy for Sustainable Future

PROVECTUS Middle East

P.O. Box 48987 – Dubai UAE Downtown Burj, Dubai

Tel /Fax : +971 4 443 8709

customer@provectusme.com www.provectusme.com